全国咨询热线:
15902923228

 
维修范围
 
维修设备
 
维修现场
 
电机知识
 
使用保养
 
故障判别
 
维修技术
战场电气化——防务领YE3电机域的能量系统技术革命(2)
战场电气化——防务领YE3电机域的能量系统技术革命(2)

英国“暴风”未来战斗机要求具备定向能武器、先进传感器与数据系统等,对电力系统提出了更高的要求。

英国“暴风”未来战斗机要求具备定向能武器、先进传感器与数据系统等,对电力系统提出了更高的要求。

英国苏帕凯特公司的全电驱动全地形车辆

英国苏帕凯特公司的全电驱动全地形车辆

战场电气化的发展现状

1.航空装备电气化

美空军早在二战期间就提出了“基于电力的飞机”(Electrically-based Aircraft)概念,设想了未来电气化的飞机架构。随着电力电子等相关基础技术的发展,20世纪70至80年代洛克希德公司率先提出了全电飞机概念,随后相关主要航空制造商开展了多电化技术研究,有力推动了航空装备电气化进程。

在相关技术和行业发展的推动下,美空军于20世纪90年代初提出了多电飞机发展计划,1992年联合航空指挥官小组组织了来自50余家航空制造企业、研究机构、高校及来自多军种的专家,建立“电动飞机联合计划组”(MEAJPT),开展多电飞机基础技术研究、原理样机研制和系统就成试验等工作。相关成果已应用于美国多个航空装备型号,例如F-22飞机应用了固态配电技术,F-35飞机应用了固态配电、电静液作动、外装式起动/发电技术等。

为了进一步提高F-35效能、降低研发和工程研制阶段的技术和周期风险,美空军于1995年实施了“联合攻击机综合子系统演示验证”(J/IST)计划,涵盖了容错式高压直流发电/管理和配电系统(采用270伏高压直流电力体制、双通道开关磁组起动/发电机)、热/能量综合管理系统(辅助动力装置APU、应急动力装置EPU、起动/发电机、环控系统的综合)等多项电气化关键技术。

随后美空军实验室开展了为期10年的“飞行器能量综合技术”(INVENT)计划,自2008年招标启动至2018年初完成,美国主要航空主机制造商(波音、洛马、诺格)、发动机制造商(通用电气、普惠、罗罗北美)、机载系统制造商(汉胜、派克、穆格、霍尼韦尔)等均参与了INVENT计划。该计划关注3大子系统,包括鲁棒电源系统、自适应动力与热管理系统、高性能电作动系统,开展了模型开发、仿真分析、系统综合、地面演示验证等研究。

INVENT计划完成后,美空军进一步提出“下一代热、电力与控制”(NGT-PAC)计划,增进对未来机载电力系统的认识,从主机和发动机两个角度评估其技术可行性,并开展演示验证。该项目被列为“绝密”级别,项目周期7年,内容包括电力与热管理架构综合研究、电力系统研究等多个领域,涵盖鲁棒高效电源管理、先进电力控制与分配技术等技术内容。

在开展多电技术研究的同时,以NASA、美国防部国防预先研究计划局(DARPA)、美空军研究实验室为代表的研究机构和以空客、罗罗为代表的企业正在开展电推进技术研究。NASA开展了X-57全电推进演示验证计划,资助开发兆瓦级电机和电力电子设备研究,建设24兆瓦、4.5千伏电推进飞机试验台(NEAT)。空客在电动通用飞机研究基础上与罗罗公司合作开展E-Fan X支线级混合电推进演示验证计划,测试2.5兆瓦发电机、2兆瓦电机、3千伏高压电网等技术。NASA与波音在“航空推进系统研究与技术”(RTAPS)项目下,共同研究提出了N3-X未来干线分布式超导涡轮电推进飞机概念,由2台涡轴发动机输出轴功率、利用超导发电机为系统提供电能,驱动15台嵌入机身后部的超导电机产生推力,同时配电系统、电缆也将广泛采用高温超导技术,一方面保证极高的能量效率,另一方面可显著降低系统重量。在民用航空市场的巨大投资驱动下,相关关键技术能够得到快速发展,有望迅速应用于武器装备领域。

英国奎奈蒂克公司的轮内电动轮毂驱动技术

英国奎奈蒂克公司的轮内电动轮毂驱动技术

2013年,DARPA启动了“垂直起降实验飞机”(VTOL X)计划,由极光飞行科学公司(Aurora Flight Sciences,现属波音)、罗罗公司和霍尼韦尔公司合作开发名为XV-24的分布式电推进倾转翼垂直起降飞机。XV-24具有24个电机驱动的变距涵道风扇,可实现垂直起降并转换为平飞巡航模态。但由于霍尼韦尔在1兆瓦发电机研发过程中遇到了热管理困难、同时DARPA没有找到合适的军方合作项目,因而DARPA于2018年年初取消了该计划。

#p#分页标题#e#

2020年美国航空航天学会科技大会(AIAA SciTech Forum and Exposition)上,美空军研究实验室展示了一款分布式混合电推进飞机概念模型。这一概念采用分布式电推进布局,驾驶舱上方设置有鸭翼,同时采用无尾布局。机翼分段,内侧为平直盒状翼,分隔为7组涵道,采用分布式电推进系统提供动力;机翼外侧为常规后掠翼。根据NASA此前公布的类似概念方案推测,内、外翼连接处结构可容纳内燃机驱动的发电机系统,为推进系统提供电力。考虑到混合电推进技术能够有效提高能量效率、降低噪声,因此可推测该飞机概念作为运输机可获得良好收益,一方面保证较大航程,另一方面降低在战场上的噪声特征。

2.地面装备电气化

美陆军针对战场电气化设定了10年发展目标,要求完成全部设备的电气化。美陆军坦克车辆研究开发工程中心开展了“下一代作战车辆”(NGCV)计划,计划于2022年前完成2辆坦克原型机。

英国国防科学技术实验室(Dstl)于2019年9月11日宣布投资320万英镑,开展未来地面作战车辆研究,核心内容为地面装备电驱动解决方案。该项目由奎奈蒂克公司(QinetiQ)牵头开展,将采用轮内电动轮毂驱动(In-wheel electric hub drive)技术,同时探索电力和液压主动悬架控制、车辆地形扫描传感、激光雷达等技术。通过电驱动技术的应用,有效提高作战车辆的操作性和战术机动性,同时提高能量效率。该研究计划为期3年,分为2个阶段。第一阶段将为期1年,重点是概念研究和建模;第二阶段为期2年,开展原型机设计与测试。参与研究的机构还包括克兰菲尔德大学、威廉姆斯高级工程学院、霍斯特曼防御系统(军用车辆悬架领域专业公司)等。

英国汽车制造商苏帕凯特公司(Supacat)在2019年英国国际防务展上公布了全电驱动的有人驾驶全地形车辆(ATMP)验证机。ATMP基于现有平台进行电气化改装,拆除原有发动机,装配电池组、电机和变速装置,动力输出至轮毂驱动车辆。采用电驱动系统有效提升了车辆的控制性能,允许驾驶员和控制系统更为精确地控制车辆运动状态。

3.海上装备电气化

随着先进任务系统及武器系统技术的引入,舰艇功率需求激增,对电力系统容量和稳定性的需求也大幅提升。为了保证任务系统及舰艇平台的用电质量,美海军于2007年在计划执行办公室(PEO)下建立了电动舰艇办公室(ESO,PMS 320),负责开发架构简单、经济性良好并且能力先进的电力系统,特别关注定向能(DE)和其他高功率任务系统的能量系统研究及其平台集成,满足海军舰艇的使用需求。

2015年,美海军海上系统司令部提出了《海军动力与能量系统技术发展路线图》(NPES TDR),梳理了新一代舰载能量系统的需求与关键技术。2019年1月2日,海上系统司令部发布了“多用途舰载能量库”(Multi-Application Shipboard Energy Magazine)研究计划的信息征求(RFI),旨在研究面向定向能武器等新型负载的模块化、可扩展的中间电力系统,目的在于为定向能武器等高能任务系统提供电力,同时保护能量系统及平台其他系统不受任务系统产生的脉冲的影响。同时,能量库可以支持舰艇平台的能量管理、负载均衡和应急供电。

4.后勤保障电气化

美陆军已经尝试了在战场后勤保障中使用新型电气化手段,从而节约燃油消耗和人力成本,降低燃油运输对后勤供应的压力。

美陆军在阿富汗执行了“尼姆罗兹”行动(Operation Nimroz),采用电池、太阳能板等新型电气化设备,代替传统内燃机为行动提供能源。按照后勤保障要求,该行动的基地需要使用13台基于燃油的传统内燃机,以驱动发电机、保证任务的能源需要,但大部分发电机都会处于低功率运行状态。美国陆军引入了2套由电池、太阳能板和发电机组成的混合装置为特定任务提供电能,仅仅使用上述2套混合装置和2台原有发电机就满足了要求的后勤保障任务。这一尝试每周可节约1600加仑(约合6060升)燃油、30个发电机加油工时和20个发电机维护工时,工程师可将精力集中在更为重要的任务上,同时有效减少了基地运行过程消耗的燃油,降低了后勤保障的压力。

启示

随着能源供应、后勤保障压力等问题的凸显,同时也伴随着电力系统技术的发展,战场电气化正在逐步引起军方与工业界的关注,包括大功率发电机、高能量密度电池、超导发/配电系统、先进能量管理等在内的关键技术研究全球各国均处于技术成熟度较低的阶段,需要在超导材料、宽禁带半导体电力电子器件等基础研究领域有所突破。

#p#分页标题#e#

我国在动力电池等相关技术领域具有较强的技术和产业基础,以战场电气化引发的技术革新为契机,我国应当主动作为、加强基础研究与相关技术演示验证研究,支撑未来跨越发展、抢占先机。